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CALIBRATION, COHERENCE, AND SCORING RULES* 

TEDDY SEIDENFELDt 

Department of Philosophy 
Washington University in St. Louis 

Can there be good reasons for judging one set of probabilistic assertions more 
reliable than a second? There are many candidates for measuring "goodness" 
of probabilistic forecasts. Here, I focus on one such aspirant: calibration. Cal- 
ibration requires an alignment of announced probabilities and observed relative 
frequency, e.g., 50 percent of forecasts made with the announced probability 
of .5 occur, 70 percent of forecasts made with probability .7 occur, etc. 

To summarize the conclusions: (i) Surveys designed to display calibration curves, 
from which a recalibration is to be calculated, are useless without due consid- 
eration for the interconnections between questions (forecasts) in the survey. (ii) 
Subject to feedback, calibration in the long run is otiose. It gives no ground for 
validating one coherent opinion over another as each coherent forecaster is (al- 
most) sure of his own long-run calibration. (iii) Calibration in the short run is 
an inducement to hedge forecasts. A calibration score, in the short run, is im- 
proper. It gives the forecaster reason to feign violation of total evidence by 
enticing him to use the more predictable frequencies in a larger finite reference 
class than that directly relevant. 

1. Introduction-Calibration and Calibration Curves. The radio an- 
nouncer reports a "30 percent chance of precipitation" for tomorrow. A 
phone call for the local weather forecast yields the same message. But 
the Channel 4 TV weatherman says there is only a 20 percent chance of 
rain for tomorrow and he is billed as having the most reliable weather 
predictions in town. Not surprisingly, it is Channel 4 itself that advertises 
the superiority of the Channel 4 weather predictions. 

The immodest claim made by Channel 4 on behalf of its own skills at 
meteorological prognostication prompts an important question. Can there 
be good reasons for judging one set of probabilistic assertions more re- 
liable than another? The problem is hardly new (see Finetti 1972, chap. 
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3) and specific proposals for measuring the "goodness" of probabilistic 
weather forecasts date back some thirty years, at least (see Brier 1950). 
Needless to say, what we learn about rating weather predictions can be 
applied to appraising expert handicappers of all sorts. 

There are many approaches to assessing "goodness" of probabilistic 
forecasts (see Murphy and Epstein 1967). Here I am concerned with one 
such aspirant: calibration, which carries philosophically interesting con- 
sequences for the debate between personal and frequency interpretations 
of probability. 

DEFINITION: A set of probabilistic predictions are (well) calibrated if 
p percent of all predictions reported at probability p are true. 

In other words, a forecaster's predictions are calibrated if half of those 
made at "probability .5" are true, if 70 percent of those made at "prob- 
ability .7" are true, etc. Simply put, calibration is an alignment of relative 
frequency of occurrence and assertions grouped by constant "probabil- 
ity. ,, 

The contrast afforded by calibration is not intended merely for descrip- 
tive purposes. Better, it is thought, that the forecasts be calibrated than 
not. Efforts have been made to tabulate responses to questionnaires, to 
construct calibration curves, so that individual profiles of those well cal- 
ibrated, or overconfident, or underconfident in their probability assess- 
ments might be made observable. Figure 1 illustrates the technique for a 
graphic display of departures from calibration (see Lichtenstein and 

Figure 1 

Frequency of: D 
Correct A 

Responses 4 

C Calibration curves for: 
(A) underconfident 

.2 * (B) calibrated 
(C) overconfident 
(D) mixed-case 

0 , forecasters. 
0 .2 .4 .6 .8 1 

Forecast Probability 

'There is the obvious generalization to calibration E E, but nothing said here depends 
upon whether E is small instead of E = 0. 
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Fischhoff 1977). Well-experienced decision theorists have speculated that 
it is a common feature of ordinary forecasts that they are overconfident 
about expected values (see Pratt and Schlaifer forthcoming; Alpert and 
Raiffa 1982; and Lichtenstein, Fischhoff, and Philipps 1982). 

What merit is there in having calibrated weather forecasts? Alterna- 
tively, what risk do I run in relying upon a weatherman who is poorly 
calibrated?2 Of course, that depends upon what I do with the forecasts I 
hear. Suppose, for simplicity, I listen to one forecaster and adopt his 
announced "chance of precipitation" as my personal probability for rain/ 
snow tomorrow.' Then is there an advantage to me to use a calibrated 
weatherman? M. J. Schervish (1983) adduces an interesting reason to 
think there may be, but rightly judges it insufficient for an affirmative 
answer. 

If we consider simple (binary) decisions I am to make, where the rel- 
evant states of uncertainty are "rain" versus "no rain," we may contrast 
the value to me of different forecasters by the efficacy of the decisions 
I would make on condition that I adopt their forecast probabilities as my 
own. Without loss of generality (and assuming states are probabilistically 
independent of acts), a simple decision is summarized in the 2 x 2 matrix: 

Figure 2 
S1 S2 

A1 0 -x 

A2 -(1 -X) 0 

S1 and S2 are the states "rain" and "no rain," and x (O ' x ? 1) is the 
"loss" upon choosing option A1 when state S2 occurs and (1 - x) the 
"loss" upon choosing option A2 when state S1 occurs. To maximize ex- 
pected utility in this choice, adopt A1 if the probability of "rain" is as 
great as the "loss" x, i.e., 

if P(S1) ' x, then choose A1. 

Consider a sequence of distinct but similar decisions, where the re- 
spective "losses" are constant. A forecaster's net performance can be gauged 
by the average "loss" incurred when decisions are made based on his 
announced "probability of rain." Following Schervish (1983, p. 3) say 

2Murphy and Winkler (1977) report that weathermen tend to be well calibrated. 
3This is how De Groot and Eriksson (forthcoming) define calibration from a subjectivist 

point of view. That is, forecast B is calibrated from the perspective of subjectivist A if A 
is prepared to adopt B's announced forecasts as his own, i.e., if 

PA(E IPB(E) = r) = r; 

where PB(E) is B's announced forecast for event E, and PA(.I-) is A's subjective conditional 
probability. On this account, each coherent subjectivist is calibrated by his own lights. 
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that forecaster 1 performs at least as well as forecaster 2 on a sequence 
of distinct but similar decisions, if for each "loss" (for all x) the average 
"loss" incurred when decisions are based on forecaster 1 is no greater 
than that incurred when decisions are based on forecaster 2. In other words, 
forecaster 1 outperforms forecaster 2 if similar decisions made with his 
forecast 1 probabilities dominate those of his rival (as a function of 
average "loss"). 

One merit in a calibrated forecaster is made clear by comparing the 
performance of a poorly calibrated weatherman with that of his calibrated 
counterpart. Over a (finite) sequence of daily forecasts, let forecaster 2 
be miscalibrated in his announced "chance of precipitation." On the basis 
of forecaster 2's calibration curve (see Figure 1), construct a well-cali- 
brated forecaster 1 simply by using the observed relative frequency of 
"rain" corresponding to each of forecaster 2's forecasts. For example, if 
the relative frequency of "rain" is 70 percent on days when forecaster 2 
announces a "chance" of .6, then forecaster 1's prediction is a "chance" 
of .7 whenever forecaster 2 announces a "60 percent chance of rain." In 
this fashion we construct a well-calibrated counterpart (forecaster 1) to 
forecaster 2. 

There is an interesting result about forecasters and their calibrated 
counterparts. 

THEOREM 1: (Schervish 1983, T. 13): If a forecaster is not well cali- 
brated over a given (finite) sequence of events, then his well-cali- 
brated counterpart outperforms him in similar decisions taken over 
this sequence. 

In this sense, it pays to rely on calibrated forecasts. However, the result 
has little operational value, as construction of the "counterpart" depends 
upon the calibration curve for the miscalibrated forecaster. That is infor- 
mation typically unavailable until after the decisions must be made. 
Moreover, if choices can await construction of a calibration curve for a 
forecaster, then, as one learns not only whether or not the forecaster is 
calibrated but also whether or not it "rained" on a given day, the decision 
theoretic claim of Theorem 1 is moot. Under these conditions the choices 
are made under "certainty" and forecaster reliability is irrelevant. 

Though the data summarized in a calibration curve may come too late 
to affect my decisions involving those past events for which the calibra- 
tion curve is constructed, am I not now in a better position to use the 
weatherman's next forecast after seeing his calibration curve for, say, his 
last 1,000 daily forecasts? If the weatherman is (practically) well cali- 
brated for this long stretch, am I obligated by minimal principles of in- 
duction to use his announced forecasts as my personal probability for 
rain? The answer depends upon whose account of "direct inference" you 



278 TEDDY SEIDENFELD 

adopt. As I understand Kyburg's position (Kyburg 1974), the frequency 
information contained in the weatherman's calibration curve (in the ab- 
sence of other frequency data about tomorrow's weather) fixes the episte- 
mological probability of "rain" close to the announced "chance." But on 
accounts of direct inference that adhere to a (Bayesian) requirement of 
conditionalization, e.g., Levi's program (see Levi 1981 for pertinent dis- 
cussion), no such inference is mandated.4 

Suppose, either because inductive logic is Kyburgian or because I am 
prepared to make the requisite irrelevance assumptions, I think the weath- 
erman's observed calibration determines my reaction to his forecast for 
"rain" tomorrow. Thus, if the forecast is for an "x percent chance of 
precipitation" but the calibration curve reveals a y percent of occurrence 
of "rainy" days whenever the forecast is "x percent," then I assign a 
probability of .y to "rain" tomorrow. Under these conditions, the fact 
that forecasts are calibrated, as opposed to being overconfident, is not 
what makes them informative to me. 

For example, a poorly calibrated weatherman, one who is quite over- 
confident in his high-probability predictions, may nonetheless be more 
valuable a source of weather information than some well-calibrated rival. 
In an extreme case, a weatherman is calibrated if he announces the same 
"chance" of precipitation day after day, where that is the correct overall 
percentage of "rainy" days, e.g., 20 percent for the Chicago area. Hence, 
the poorly calibrated weatherman might be a better discriminator for judg- 
ing rain tomorrow, though his discriminations are not positively correlated 
with his announced "chance." 

Knowing all this, of course, I can convert the poorly calibrated fore- 
caster into his well-calibrated counterpart by a simple correction, i.e., 
transform the high-probability forecasts into (suitably) low-probability 
forecasts as dictated by the calibration curve. In that case, there are two 
sets of calibrated predictions: the well-calibrated one-note weatherman 
("There's a 20 percent chance, again!") and the recalibrated forecasts of 
the weatherman with better resolving power.5 

These informal considerations raise a paradox. If I can improve the 
calibration of the overconfident weatherman by a transformation that de- 
pends solely upon his calibration curve, why can't he do the same for 

4In a program such as Levi's, the "direct inference" depends upon additional assump- 
tions of confirmational irrelevance not fixed by the information contained in a calibration 
curve. I have examined several consequences of this debate for statistical inference in an 
earlier essay (Seidenfeld 1978). 

'For a useful discussion of how well-calibrated forecasters might be compared see the 
papers by De Groot and Fienberg 1981, 1982; and by De Groot and Eriksson forthcoming. 
These use a partial ordering of calibrated distributions coincident with the partial ordering 
induced by the statistical notion of sufficiency of experiments (see Blackwell and Girshick 
1954, chap. 12). 
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himself? It would appear that each forecaster is in a position to become 
calibrated if only he pays attention to his own track record as reported 
by his calibration curve. Hence, principles of rationality should ensure 
whatever anyone needs by way of calibration on the condition that past 
performance is available.6 How can calibration be an index of reliability 
if it is so easy to attain? 

The "paradox" is resolved, I maintain, by distinguishing two senses of 
calibration. To repeat, qua norm, calibration requires that a sequence of 
probability-p level forecasts have a relative frequency of p percent correct 
assertions. We can impose calibration as a requirement for some (hy- 
pothetical) long-range, denumerable sequence of predictions. Or we can 
impose it as a requirement for some finite set of forecasts. The former 
has obvious ties to the limiting-frequency interpretation of probability. 
The latter suggests a finite-frequency interpretation. On either reading, 
calibration is linked to a frequency interpretation. 

Understood this way, calibration (in either sense) stands outside the 
minimal conditions imposed by a subjective (Bayesian) interpretation. It 
is an all too familiar objection to subjectivism that its standards of ra- 
tionality are overly liberal; that it tolerates coherent but wildly unreason- 
able views which bear little semblance to the facts. But our informal 
analysis suggests that calibration is easily achieved, even for a subjectiv- 
ist, merely by attending to what you learn from your own (running) cal- 
ibration curve: construct your own calibrated counterpart. And decision 
theoretic concerns as Schervish's argument provides) suggest that, even 
for a subjectivist, it pays to be calibrated. All told, it seems that subjec- 
tivism includes a commitment to calibrated personal probabilities. 

In the remainder of this paper, I contrast the minimal requirements of 
subjectivism with calibration (taken as a norm) in each of its two versions: 
long- and short-range calibration. The lesson we learn from this contrast 
is rather surprising. Long-range calibration is, at best, otiose. Short-range 
calibration is a norm that promotes lies and deceit! 

2. Calibration and Subjectivism-basic considerations. The subjec- 
tive interpretation of probability is usually identified with the positions 
advocated by Finetti (1972, 1974) and Savage (1954). Though there is 
lively dispute over exactly what constitutes a "subjectivist," I take the 
following three as core postulates. 

1. Coherence: A rational agent has (at time t) a belief-state modeled 

6This conclusion stands in sharp contrast to the claim, "Earlier studies . . .have reported 
some evidence that people who know more are better calibrated," (Lichtenstein and Fisch- 
hoff 1977, p. 163), unless these authors cleverly intend to refer to those with better self- 
knowledge, e.g., those with better memories! 
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by a (finitely additive) conditional probability PK( |) defined over an al- 
gebra of propositions. 

2. The agent obeys a total evidence requirement: the space of possi- 
bilities is relativized to background knowledge K (deductively closed and 
consistent). K is what the agent accepts as evidence (at t). 

3. Conditionalization: Conditional probability PK( | & e) determines 
the coherent probability PK'( |I) for the expanded body of knowledge K' 
obtained by adding evidence e to K. Loosely put, conditionalization equates 
the "updated" unconditional probability PK',() with the "initial" condi- 
tional probability PK( I e) .7 

Imagine you (a subjectivist) take a "test" designed to examine your 
skill at forecasting, as measured by your observed calibration. As a sub- 
jectivist, what do you learn from the calibration curve for the forecasts 
you gave on the "test"? Two warnings are in order here. 

First, you cannot hope to construct your calibrated but coherent coun- 
terpart by a transformation based on the observed calibration curve unless 
the "test" questions are logically independent (given your background 
information K). In general, if P(Q) is a coherent (fine) probability over 
an algebra of propositions, then T[P(Q)] is coherent if and only if T is the 
identity function. (This theorem is reported in Kadane and Lichtenstein 
1982.8) Thus recalibration is a content-dependent problem. 

In other words, if a calibration curve is to reveal overconfidence or 
underconfidence on the part of the forecaster, then (on pain of incoher- 
ence) the "test" items must be logically independent from the point of 
view of the forecaster. Testing meteorological forecasts of "rain" for suc- 
cessive days seems a reasonable try at logical independence. But a battery 

7Typically, Bayesians understand conditionalization in a dynamic, temporal sense-where 
K' is a body of knowledge held at time t' subsequent to time t. This construal makes 
conditionalization into a norm, regulating changes in degrees-of-belief as learning occurs. 
Also, however, there is an atemporal sense to conditionalization (see Levi 1980, chap. 10) 
Atemporally, conditionalization is the commitment at t for relating the current belief state 
K to hypothetical belief states K' that can arise by accepting new evidence. 

The difference between these two senses of conditionalization is important to a proper 
understanding of what is settled by the Dutch Book argument-which purports to establish 
subjective, expected utility theory merely from (weak) assumptions about rational self- 
interest. For instance, Shimony's 1955 account, where conditional wagers are modeled 
by "called-off bets," involves just the atemporal sense, not the dynamic sense, of con- 
ditionalization. Thus, Dutch Book does not preclude changing your mind although you 
leave unchanged your corpus of knowledge, K. 

8The proof is straightforward. Let 4[P()] be some recalibration of the coherent (fine) 
probability P( ). Finite additivity assures the linearity of T for, T[P(g or h)] = T[P(g)] + 
T[P(h)] when g and h are contraries. But coherence requires probability 1 is a fixed point 
under T for, r[P(t)] = P(t) = 1 for each tautology t. Hence, T is the identity function. 

As an aside, this nice result constrains "counter-inductive" policies merely through co- 
herence. 
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of relational questions with common terms and, say, a transitive relation 
obviously will not do, e.g., "Is the Niger longer than the Nile?" "Is the 
Niger longer than the Danube?" etc., fails. Nor will independence be 
achieved when the questioned items are "atomic," but a simple back- 
ground generalization links them together biconditionally. Consider the 
pair of questions: "Is grey tin a good electrical conductor?" "Is white 
tin?" If the forecaster holds the (false) generalization that electrical prop- 
erties of elements do not depend upon allotropic form, these two ques- 
tions are equivalent. 

Second, there is no reason for you to accept calibration of forecasts as 
a norm if the sequence of test questions involves events you deem prob- 
abilistically dependent. (See Kadane and Lichtenstein 1982.) For exam- 
ple, asked for your current predictions about the outcomes of 100 re- 
peated flips of a coin that you judge to be either two-headed or two-tailed, 
each with probability .5, your opinion is the constant P(heads on flipi) 
= .5 (i - 1,. . ., 100). However, you are certain to be maximally mis- 
calibrated on these 100 forecasts as the outcome is either a string of all 
heads or all tails; there is an observed relative frequency of 100 percent 
or 0 percent when you have predicted outcomes with a (constant) prob- 
ability of .5. 

Both these problems arise whether calibration is taken in the short- or 
long-range sense. Fortunately, there is a common solution. Provide the 
forecaster with feedback between successive predictions, informing him 
if the previous forecast is accurate prior to eliciting the next forecast. 
Then, on condition the new evidence (the feedback) is consistent with 
background information, the sequence of predictions constitutes an ab- 
solutely fair process (as explained in the Appendix). This is also sufficient 
to avoid the problem of logical dependence. 

Daily weather predictions of "rain" constitute a simple illustration. The 
meteorologist observes Monday's weather before Tuesday's forecast is 
given. Allowing that the observed weather pattern does not refute ac- 
cepted theory, the forecaster faces a sequence of predictions (with feed- 
back) where it is possible to recalibrate by transforming predictions in 
light of a calibration curve. However, the forecaster now is in a position 
to calculate his own calibration curve. Thus we find ourselves in the pra- 
doxical circumstances discussed at the close of the previous section. The 
forecaster needs no assistance to recalibrate; self-help will do all that an 
outsider can. 

3. Long-range Calibration and Subjectivism. Suppose our weather- 
man is a subjectivist. His daily forecasts, an "X percent chance of rain 
for tomorrow," reflect the current meteorological conditions-including 
the feedback of today's precipitation rate. What is the relation between 
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his forecast probabilities and calibration, in the long run? As Pratt noted 
twenty years ago (see note 12) and as was recently rediscovered by A. 
P. Dawid (1982), variations on the strong law of large numbers (for mar- 
tingales) apply. In effect, the informal argument of section 1 (that a fore- 
caster can recalibrate himself merely by attending to his past perfor- 
mance) can be made rigorous. Moreover, the three core postulates of 
subjectivism are sufficient to assure long-range calibration, almost surely. 
(Readers may skip these details and proceed to the discussion following 
Theorem 3.1, p. 283). 

In detail, we have the following. Our weatherman contemplates making 
a sequence of forecasts regarding the events ei (i = 1,. . .), "rain" on 
dayi. He knows he will receive feedback informationf subsequent to the 
ith forecast and prior to the i+ 1st. The informationf (together with back- 
ground knowledge) is sufficient to determine the truth or falsity of the 
ith prediction, ei. In other words, f must (in context) be at least infor- 
mative as the binary indicator: 

= 1, if e 
S, otherwise. 

The upshot is that: P(ei) = Pi is the first probabilistic forecast (for 
"rain" on day,); P(e21f1) = P2 is the second such prediction; and generally 
P(eiIf,,. . .,f- 1) = pi is the subjectivist model for the ith day's forecast. 
Of course, the magnitude of pi depends upon all the evidence (fi,. .,f-I 
in general. But the predictions are independent, when relativized to their 
(respective) background conditions.9 

To test these predictions for miscalibration, consider an arbitrary, in- 
finite subsequence identified by the sequence (i (i = 1,. . .), where each 
(i is either 0 or 1. That is, we are to include the ith forecast in the test 
subsequence just in case (i = 1.10 Following Dawid (1982, p. 606), de- 
fine: 

k 

Vk (i (i) 
i=l1 

k 

rfk = Vk Eii (ii) 

i=1 

9Note that pi is asserted under background conditions logically weaker than those for the 
jth forecast (j > i). Technically, the claim of independence involves the sequence of (ab- 
solutely fair) random variables {Xi}, Xi = (pi - Ii). 

10The value (i need be determined (measurable) only after (fl,. . J-1) are specified, 
i.e., after the i - 1st feedback. The sequence of ~'s is analogous to a place selection 
function used to determine random subsequences in a von Mises collective. (See Spielman 
1976, for related results.) Last, we assume infinitely many gt are positive, in the spirit of 
long-range calibration. 
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and 
k 

Pk Vk Ei (iii) 
i=l1 

In words, (i) counts the number of forecasts chosen from among the first 
k to form the test subsequence; (ii) is the relative frequency with which 
events ei occur, relativized to those tested (by the subsequence) among 
the initial k predictions. Last, (iii) gives the average forecast probability 
within the tested subsequence, over the first k predictions. 

THEOREM 3. 1: Assuming (i = 1 infinitely often, with probability 1, 
lim (rfk - Pk) = 0- 
k--oo 

Proof: See the Appendix. 

The theorem asserts calibration, almost surely. For example, if the me- 
teorologist uses probabilities from the interval [r - E, r + E] infinitely 
often in his forecasts, then he can be almost sure that on this (sub)sequence 
of his predictions the observed relative frequency of "rainy" days is be- 
tween r - E and r + E.11 

In his classic work The Foundations of Statistics, L. J. Savage gives 
the oft-cited result (Savage 1954, sec. 3.6) that nonextreme coherent 
opinions converge (almost surely) to the truth with enough shared evi- 
dence (of the appropriate sort). Like that well-known consequence of sub- 
jectivism, this theorem of Pratt and Dawid displays yet another asymp- 
totic property of coherent beliefs (subject to accumulating evidence). 12 If 
long-range calibration is thought to signal realism, as an objective vali- 
dation of subjective beliefs, then mere coherence is sufficient to establish 
(almost certain) agreement with the facts, in the long run. The agreement 
is "internal" (in Putnam's 1981 phrase), as the result holds-the asymp- 
totic calibration is judged-from the point of view of the forecaster. The 
increasing body of consistent evidence must be accepted by the fore- 
caster. What he is prepared to admit as evidence (as feedback) on dayi 
depends upon his background assumptions at that stage; similarly for Sav- 

"1To construct this subsequence, set (i = 1 just in case r - E < pi < r + E. This inequality 
is determined to hold or fail after the i-lst feedback, in accord with the measurability 
conditions. 

12We obtain Dawid's (1982) result from Theorem 3.1 by restricting feedback (f ) to the 
indicator I, i.e., the weatherman learns only if dayi was "rainy" or not. To obtain Pratt's 
result, let the feedback on day i (prior to forecast pi,1) be the (real-valued) amount of 
rainfall on dayi, and require each forecast to fix, e.g., an upper 90 percent estimate of 
rainfall for the next day. Then pi = .9 (i = 1,. . .) and the weatherman's prediction amounts 
to a lower (probability = .9) interval-estimate of rainfall. (J. W. Pratt [1962], "Must sub- 
jective probabilities be realized as relative frequencies?" Manuscript.) 
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age's "convergence of opinion." What is lost by this constraint? There 
is no privileged epistemological vantage point free of this modicum of 
"relativism. " 

4. Calibration in the Short Run and Scoring Rules. If calibration in 
the long range is of no concern to a subjectivist (theorem 3.1) what then 
of calibration in the short run? Is there some useful criterion of short- 
range calibration that demarcates the expert from the duffer? Can some 
index of calibration be used to identify the best weather forecasts over 
the next year's set of daily predictions? In general, a short-run scoring 
rule for gauging calibration must compare observed calibration after the 
fixed period (the calibration curve) with the well-calibrated forecaster and 
compute a "distance" between the two. (See Rao 1980 for a useful dis- 
cussion of "distance.") 

The idea of a scoring rule for measuring adequacy of one's predictions 
is hardly news to a subjectivist. The standard defense of the subjective 
interpretation of probability as personal betting rates, the "Dutch Book" 
argument, trades on this theme. Following Finetti (1974, p. 87) consider 
the procedure which requires you to choose a value x (called a prevision) 
for each real-valued random quantity X, with the understanding that you 
are obliged to accept any gamble of the form (with payoff): 

c(X -); 

where c is some real number selected at the discretion of an "opponent." 
In the case where X is the indicator for some event e (X = 1 if e, X 

- 0 otherwise), you are obliged to provide a (familiar) betting rate r (=x) 
on the condition that you are prepared to: 

win the amount S - rS if e occurs 

and 

lose the amount rS if e fails to occur, 

with c = S > 0. That is, you are asked for a betting rate on e at which 
you are indifferent between betting on/against e.13 

DEFINITION: Your previsions are coherent if there is no finite selection 
of gambles (c # 0) that ensures you a (uniformly negative) loss. 
Otherwise, your previsions are incoherent. 

Finetti's "Dutch Book" theorem establishes that the rates for bets on events 
satisfy the axioms of (finitely additive) probability just in case they are 

13For a good discussion of why the supposition of a fair betting rate on each event is 
excessive in the name of rationality, see Kyburg (1978) and Levi (1980, chap. 4). 
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coherent.14 Finetti argues that, in general, coherence of previsions is 
equivalent to their being finitely additive linear functionals meeting the 
added constraint that infemum X ? x < supremum X. However, this claim 
requires additional limitations on the structure of payoffs (see Seidenfeld 
and Schervish 1983). 

The distinction between coherent and incoherent previsions yields a 
binary classification into those which are decision-theoretically admissi- 
ble and those uniformly inadmissible against the simple alternative: no- 
bet (c = 0, for each c), based on a finite selection of gambles. However, 
from the standpoint of (short-range) calibration, admissibility alone is too 
liberal an account of rationality, as coherence fails to distinguish well- 
calibrated from poorly calibrated forecasters. Nor does success in gam- 
bling serve as a useful measure of (short-range) calibration.15 

Gambles are not alone among scoring rules that serve to demarcate 
coherent previsions from incoherent ones. 

DEFINITION: Call a scoring rule for previsions a proper scoring rule if 
it is (always) in the forecaster's interest to announce his true previ- 
sion. Under a proper scoring rule, a forecaster maximizes his ex- 
pected score (or minimizes it in case of penalty scores) by reporting 
his honest opinions. 

Thus, a scoring rule for (previsions on) events is proper just in case it 
evokes the gambler's fair betting rates. 

Gambles, as defined above (c[X - x]) are proper, assuming the units 
for wagers are linear in utility. An agent who mimics a set of (coherent) 
previsions different from his own faces a selection of "c's" (by an op- 
ponent) that results in an expected loss. (Of course, if he mimics an in- 
coherent set of previsions, he exposes himself to a sure loss, by "Dutch 
Book.") This possibility is ruled out exactly when he reports his honest 
previsions, when all gambles strike him as fair, and there is no expected 
loss or gain from a (finite) selection of wagers. 

14The extension to conditional bets is achieved (Shimony 1955; Finetti 1974, p. 135) 
with the use of called-off bets. To fix a conditional prevision for X, given f, use an un- 
conditional wager with payoff: 1; c(X - x), where If is the indicator variable for event f. 
Then coherence across previsions, including conditional previsions, yields the multipli- 
cation theorem for conditional probabilities. 

For a helpful discussion of the limitations in this approach regarding coherence of con- 
ditional previsions given events of probability 0, see Levi 1980, sec. 5.6. 

15For example, consider two gamblers who share the same coherent belief states: they 
are epistemic twins. One will wager against the other on a finite sequence of mutually fair 
bets, at their common betting rates. But the one shows a net profit just in case the other 
shows a net loss. Unless they choose sides (c Z 0) as a function of their odds (player, 
always takes the long odds), their individual gains and losses bear no correlation to their 
common calibration. 
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As Finetti notes (1974, p. 93), gambles have an operational awkward- 
ness when used as scoring rules since they require (among other consid- 
erations) an "opponent" whose behavior in picking out what to gamble 
on might, e.g., influence the bettor's opinions that are to be elicited. An 
alternative proper scoring rule is to penalize the forecaster by an amount 

L = (X - (*) L 
k 

for some known constant k # 0.16 Any linear transformation of a proper 
scoring rule is, again, a proper scoring rule. Thus, we can offer a small 
prize, sufficient to compensate for penalty and induce the agent's coop- 
eration. 

The scoring rule (*) allows a demarcation between coherent and in- 
coherent previsions by the criterion of admissibility; that is, as was the 
case with gambles, this scoring rule allows us to declare a set of previ- 
sions incoherent if for some finite set of random variables there is an 
alternative collection of previsions with (uniformly) smaller losses under 
(*) (regardless of the values of these random variables).17 

The scoring rule (*) has several interesting characteristic features. In 
his seminal paper, "Elicitation of Personal Probabilities and Expecta- 
tions," Savage (1971) shows that the quadratic loss L is unique among 
proper scores for either condition: (i) L is symmetric in honest and re- 
ported previsions. That is, the forecaster's expected loss when r is an- 
nounced and s is his prevision equals his expected loss when s is reported 
and r is his prevision. (ii) L depends upon (r - s) only. Also, the quad- 
ratic loss (*) is the algebraically simplest proper score. For example, the 
alternative loss function: 

Li = -x (e*) 

leads to announced forecasts of 0-1 "previsions" for events. When scores 
are calculated according to (**) for forecasts on events Xe, the forecaster 
minimizes his expected L'-loss by the simple rule: 

announce Xe = 1 if P(e) > .5 

announce.xe = O if P(e) < .5 

and announce an arbitrary value for xe if P(e) - .5. 

16Using the proper score (*) in place of gambles does not avoid the operational worry 
that selection of random variables for scoring might influence the bettor's previsions. Since 
all scoring rules must be restricted to a proper subset of the algebra when applied, I see 
no way round this problem. 

17To verify that L is proper with respect to previsions for events, note that a forecaster 
minimizes his expected loss by reporting x = r = P(e), for X = Ie. 
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In general, L' is minimized by reporting the median of one's personal 
distribution for X, instead of the mean of that distribution (which is what 
a proper score elicits). 18 

For purposes of differentiating among rival coherent forecasters, proper 
scores such as L have an advantage over gambles. Gambles elicit previ- 
sions that make each one fair-and so too is the sum of finitely many 
fair when payoffs are linear in utility. That is not the case with quadratic 
loss, as G. W. Brier noticed some thirty-three years ago (1950). 

Brier set himself the task of constructing a proper scoring rule for ver- 
ifying weather forecasts. On each of N occasions one of R possible (ex- 
clusive and exhaustive) meteorological events transpires. Thus, the 
weatherman gives daily predictions over an R-fold partition of meteoro- 
logical states, for N days. Let Iij be the indicator for the jth (of R) event(s) 
on the ith (of N) occasion(s). Let pij be the weatherman's probabilistic 
forecast for Iij, i.e., the announced probability for eventj on dayi. Brier 
proposed the following score: 

R N 

(Brier score) B = (1/N) E E (Pij - I) 
J=1 i=1 

Brier-score is merely Finetti's quadratic loss L, with k = \/N, summed 
over the RN simple predictions, and scaled with a range of (0,2) (assum- 
ing the forecaster is coherent). 

A perfect score (B = 0) is achieved by using 0-1 forecasts exclusively 
and committing no errors. A worst score (B = 2) is achieved again by 
using 0-1 forecasts only and getting none of the probability-I predictions 
correct. Each coherent forecaster expects a Brier-score less than 1 (= 
lim [1 - ri'). A forecaster with a uniform probability over the RN simple 
events (pij 1/R) earns the constant score (R - 1)/R. Thus, both the 
expected score and the range of possible scores depend upon the fore- 
caster's distribution: the full [0,2] range is uniquely associated with the 
distribution of lowest, i.e., best, expected score-the two-point 0-1 dis- 
tribution. 

Let us contrast Brier-score with a short-range calibration scoring rule 
closely related to it. As identified by Bross (1953), first tied to Brier- 
score by Sanders (1958), and later investigated by Murphy (see his 1973a, 

"8In his discussion of the value of evidence, P. Horwich proposes L' as an index of error 
of a distribution (1982, p. 127). Unfortunately, his discussion does not take note of the 
distinction between proper and improper scores. Since the decision-theoretic conclusion 
Horwich seeks depends upon convexity of the payoff function, a property shared by all 
proper scores (see Savage 1971, p. 575), there is no need to think of one score as the 
error function-any proper score supports the decision-theoretic claim that cost-free evi- 
dence is (weakly) desirable. (For additional results see Lindley [1981].) 
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1973b, 1974; and Murphy and Epstein 1967; Murphy and Winkler 1977, 
for a selection), we have the following index of miscalibration. To repeat, 
the weatherman gives daily forecasts over an R-fold partition of mete- 
orological events. Thus, each of his predictions is a vector 

i = (Pil, , PiR) (i = 1,. . 

Coherence entails: 
R 

2>Pi>J 1. 
j=1 

Of the N vector-valued predictions Pi there are T distinct ones (T ? N), 
identified as pt (t = 1,. . .,T), with nt instances of forecast j3t, where 

T 

, n - N. 
t=1 

Our concern with calibration requires a contrast between each pt vector- 
valued forecast and the corresponding vector of observed relative fre- 
quencies: rf' = rf', . . ,rf' ), where rf is the relative frequency of eventj 
on Lnose days when forecast p' is announced. Weighting the squared- 
difference between pt and rf 'by the number of occasions when p' is used 
(n,), we arrive at the Brier-calibration score for N R-fold forecasts: 

T 

Brier-calibration = (1/N) n - rf')(p't - rft)' . 
t=1 

As shown by Murphy (1973b), the Brier-score (B) can be decomposed 
into a sum of three indices, one of which is Brier-calibration.19 

Can Brier-calibration be used to gauge short-range reliability of fore- 
casts? Unfortunately, whereas Brier-score is proper, this index of cali- 

'9The remaining two summands (in Murphy's terminology) are: (i) the "uncertainty" of 
the events, and (ii) the negative of the "resolution" of the predictions. 

The "uncertainty" is the Brier-score (B) for the vector of observed frequencies. That is, 
let F = (rf1,. . .,rfR) be the vector of overall relative frequencies for the R events over 
the N days. Then the "uncertainty" is the Brier-score for the repeated forecast F. This is 
the minimum Brier-score that can be achieved by repetition of a single prediction vector 
(for the given N days). Also, it corresponds to the inverse of the Fisher information in the 
R-cell multinomial distribution with multinomial weights (rf, . .,rfR). 

The "resolution" of the forecasts is an index of the "distance" between the vector of 
observed relative frequencies (F) and the vectors rf " Specifically, "resolution" is the quan- 
tity: T 

(1/N) n,(F - rf')(F - rf')'. 

Simply put, "resolution" is an indicator of the forecaster's ability to discriminate different 
relative frequencies according to his forecasts, regardless of what those forecasts are. 
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bration is not! Suppose a weatherman is to make daily forecasts for the 
Chicago vicinity and knows he is to be scored for performance on a cal- 
ibration index of reliability after one year. For simplicity, imagine he is 
required to provide the binary vector prediction for ("rain," "no rain") 
(R = 2, N = 365). To perform well on the test for calibration, a good 
strategy is to take advantage of the practical certainty that the overall rate 
for precipitation in Chicago over the next 365 days will be very nearly 
the yearly average, approximately 20 percent. That is, regardless what 
the weatherman thinks about the day to day weather, a simple strategy- 
announce a "20 percent chance of precipitation"-is excellent for a su- 
perb calibration score. Of course, this strategy will be expected to fare 
noticeably worse on the Brier-score (with about an index of .16) than 
what is usual for Chicago weather forecasters (who score about . 13-see 
Murphy and Winkler 1977, p. 44).20 

To verify that Brier-calibration is an improper score, it suffices to give 
one context in which the forecaster's expected calibration score is im- 
proved by distorting his forecast. The opportunity to improve one's cal- 
ibration score by misreporting is evident at the end of the fixed (365 day) 
forecast period. Even if the weatherman has been honest in his predictions 
for the first eleven months, he can do better not continuing with this 
policy for all twelve months. For example, suppose that (after eleven 
months) he notes that it has rained only 47 percent of those days for which 
he has announced a "50 percent chance of precipitation." The very next 
day that he is sure it will rain is a day he should announce a "50 percent 
chance of precipitation," thereby expecting to improve his overall cali- 
bration.21 (See, also, De Groot's comments to Lindley et al. (1979, pp. 
172-73).) 

The incentive for distortion grows worse if we coarsen the calibration 
index by projecting the vector-valued forecast onto individual components 
(what Murphy and Epstein call "bias in the large" [1967]). In other words, 
if we calculate calibration of predictions for "rain" separately from the 

201In terms of the decomposition discussed in footnote 19, the "one-note" forecast does 
well on the calibration component to Brier-score; it gets a zero on "resolution" and loses 
all its Brier-points on the fixed "uncertainty" component. The usual weather forecasts lose 
some Brier-points on calibration but more than make them up with their impressive "res- 
olution. " 

211t is more difficult to verify that the "one note" forecast is better than honest reporting. 
However, a short sequence of forecasts for a beta-distribution, e.g., binomial sampling 
with a "uniform" prior and N _ 7, is one case where mere repetition of the "prior" forecast 
(PI = . = p7 = .5) has a better expected score than does honest reporting. Still more 
difficult is calculation of the optimal (sequential) strategy for forecasting. Even the ele- 
mentary problem of forecasting from a beta-distribution involves rather complicated dy- 
namic programming for its solution. In short sequences (N ' 7) I conjecture that the "one 
note" strategy-repeat the "prior"-is optimal. 
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calibration of predictions for "no rain," then it may be strategic for the 
weatherman to report incoherent forecasts. For instance, imagine that after 
eleven months the weatherman's calibration curve shows overconfidence 
on his 50 percent forecasts for "rain," but an underconfidence on his 70 
percent forecasts for "no rain," then he improves his calibration for both 
sorts of forecasts by reporting the (incoherent) "50 percent chance rain, 
70 percent chance no rain" on the next occasion he is sure that it will 
"rain. " 

It is clear that, from a subjectivist point of view, short-range calibration 
is worse than useless as an index of reliable forecasting. 

5. Conclusions. What have we learned about calibration? In general: 

1. A coherent forecaster cannot recalibrate over an algebra of propo- 
sitions, on pain of incoherence. 

2. A coherent forecaster need not accept calibration as a norm when 
the sequence of predictions to be evaluated by calibration is a sequence 
of probabilistically dependent events. 

Moreover, even where these two constraints are respected, as when fore- 
casts are updated with consistent feedback: 

3. long-range calibration is almost certain for a subjectivist; 
4. whereas short-range calibration is an improper scoring rule. 

Calibration in the long run is otiose, and in the short run is an in- 
ducement to hedge announced forecasts (or an inducement to feign a vi- 
olation of the total evidence requirement by appeal to frequencies in a 
broad "reference class" of similar predictions). What is left of the intu- 
ition that observed frequencies provide a standard for assessing expertise 
in (probabilistic) forecasting? Of course, nothing shown here conflicts 
with the sound intuition that my reaction to your forecast is contingent 
upon what I know of your past performance. But, the desire for a uni- 
versal, objective index of accuracy of probability appraisers seems a will- 
o'-the-wisp. The lesson to be learned from subjectivism is that rationality 
is a loose-fitting garment. When it comes to appraising forecast skill, why 
need we agree on the merits of a weatherman given the shared evidence 
of his calibration for the past N predictions? Subjectivism makes no par- 
allel requirement for other hypotheses of mutual interest. Nor does the 
recent literature on "consensus" hint at the plausibility of such an as- 
sumption (see French forthcoming and Lindley forthcoming). 

Our discussion of proper scoring rules suggests we might profitably 
shift our concern. Instead of seeking a universal index of reliable fore- 
casting, we might consider whether there is some context-dependent pro- 
cedure for ensuring that forecasts are reliably reported. In principle, all 
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proper scoring rules elicit the same forecast distribution from a given 
forecaster. But in practice (forecasts are "rounded," etc.) different proper 
scores are useful in focusing the forecaster on distinct aspects of his fore- 
cast distribution. 

A decision maker is in a position to identify which aspects of his own 
personal probability are important to the decision at hand. In other words, 
the decision is sensitive to particular aspects of the decision maker's prob- 
ability, e.g., the "tails" of his personal probability. Suppose the decision 
maker is explicit about how he plans to use the forecaster's predictions. 
For instance, the decision maker might agree to use the forecaster's prob- 
ability as his own in this decision. Then a judicious choice of proper 
scoring rule will induce the forecaster to take care to report his opinions 
honestly, and to be precise in just those aspects important to the decision 
maker.22 

None of this serves to justify calibration as an index of reliability. Long- 
range calibration is empty. Short-range calibration is counterproductive. 
If the forecaster knows his opinions are gauged by calibration (in the short 
run), he has incentive to distort his opinions. This hamstrings the listener 
who, then, lacks an understanding of the responses thus evoked. Is it not 
wise to avoid the temptation to reward the "skill" of aligning short runs 
of frequencies and announced forecasts? If not, well-calibrated predictors 
may reveal much more skill than you suspect. 

APPENDIX 

The proof of Theorem 3.1 is a straightforward application of Feller's (1966) Theorem 
7.8.2-basically the law of large numbers for martingales. (Dawid [1982] uses Theorem 
7.9.3 of the 1971 edition of Feller's book.) The point in outlining this proof is to emphasize 
the difference between Pratt's (1962) result and what Dawid (1982) shows. The difference 
makes a difference when personal probability is finitely, but not countably, additive. 

First is Feller's Theorem 7.8.2. 
Let {XJ} be a sequence of absolutely fair random variables, i.e., E[X,4X1,. .,X.-,] 

0 = E[XI] (n = 2,. . .). Define Sn = Xi + . ..+ Xn. If b, < b2 < . .? and 
E bk-2E[Xk2] < co, then with probability 1, 

bn j ISn 0, 

and the variables: 
n 

Yn = > bk Xk 
k=1 

converge. O 

22Unfortunately, the decision maker must be on guard for the forecaster who takes an 
interest in the decision beyond his reward under the score. Then the forecaster's interest 
contaminates the score. His forecast is a "vote" in the decision-making process. The im- 
portant works of Gibbard (1973) and Zeckhauser (1973) provide unsettling results about 
the inevitability of manipulable voting schemes. What is the decision-maker to do to com- 
pensate for the forecaster's potential interests? 
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Recall that the forecaster makes a sequence of predictions for the events ei (i = 1,...), 
where there is feedbackf between the ith and i + 1st prediction. The feedback is (with 
background information) logically sufficient for the indicator 

I 1, if ei 
i0, otherwise. 

Thus, p, = P(el) is the first prediction. P2 = P(e2If1) is the second prediction. In general, 
pn = P(e,If1,. fn) is the nth such prediction. 

Let Let Xi = (i(pi - I). Then E[X1] = 0 as P1 = P(e1) = E[l1] and (, is a constant (=0 
or =1). To verify that E[Xn,X1,. . .,Xn_1] = 0, consider two cases. 

Case 1 (for Dawid's result): the feedback f is limited to a finite set (i = 1,. . .). Then 
E[Xn|Xi,. . .,Xn-1] = 0 because I,, . . ., In-1, hence X1, . . ., Xn-1, are a function of 

t,.f gn-1and these (feedback) constitute a finite partition (and i, is measurable after 

Case 2 (for Pratt's result): some (all) feedback has an infinite sample space. Then one 
must add an assumption of disintegrability in the margin of the feedback variable(s) with 
infinite sample space(s). For instance, iff1 can assume one of the denumerably many values 
fi (i 1,. . .), then to establish that E[X2X1]X 0 it is necessary to require that: 

E[X2|fli] 0= (i = 1, . . .) entails E[X2 XI] 0, () 

where, as above, I, hence X1 is a function of1,i. 
Last, let bi = v' 1 if vi > 0, and bi = 0 otherwise. Then (see Dawid 1982, p. 609) it is 

easy to verify that 

E b-2E[X2] ?2/24 < X, 

which completes the assumptions needed for Feller's Theorem 7.8.2. 
In case the forecaster's personal probability is not countably additive, two limitations 

exist. First, the nonfinitary version of convergence, bj1S, --* 0, needs to be rewritten in 
its finitary form (see Dubins 1974). (For discussion of finitely additive strong-laws of 
convergence, see R. Chen 1977.) Second, in Case 2 the entailment (*) (equivalent to 
disintegrability, see Dubins 1975) cannot always hold since its adoption across all denu- 
merable partitions is equivalent to countable additivity (see Schervish et al. 1984). 

Last, subject to these restrictions, the result continues to hold when feedback is delayed 
by several predictions, so long as the lag-times are not increasing too rapidly. 
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